The NoSQL notion suffers from some of the same ambiguity plaguing the notion of big data

Readers interested in finding out what NOSQL is all about will benefit from simply developing some familiarity with the definition of this acronym. NOSQL stands for “not only SQL”. I found this definition to be very helpful as it helped me correct my first misunderstanding about this notion. I thought NOSQL referred to a set of software tools designed to work with text, document, databases lacking the columnar table structure their Structured Query Language (SQL) siblings thrive upon.

But my understanding was wrong, which, unfortunately for businesses championing a NOSQL approach, may be the case of a lot of the enterprise user segment of the enterprise computing market for NOSQL analytics and the tools required for their delivery. mongoDB is an example of a database built to conform to NOSQL.

But as the cliche goes “the best of all intentions” can go astray, as is the case, in my opinion, for the mongoDB definition. The average consumer of enterprise computing solutions built to work with social media conversations culled from lots of web pages, likely a chief marketing officer for a popular consumer brand-name, isn’t likely to be able to understand how “Document databases pair each key with a complex data structure known as a document. Documents can contain many different key-value pairs, or key-array pairs, or even nested documents” (quoted from the mongoDB web page presentation).

Further, characterizing the choices facing the enterprise consumer as an either “RDBMS” or “non RDBMS” isn’t going to be helpful if the literal definition of the NOSQL acronym is applied. As MapR© points out on its web site, an optimum approach to implementing NOSQL analytics is to combine SQL and text query tools built with JSON components to digest the same data, which, admittedly be incorporated into a mongoDB database, but came, originally from an RDBMS.

What’s even more surprising about the page on the mongoDB website is the light it sheds on a programming effort by a much larger, and much more mature ISV, namely Microsoft: “Graph stores are used to store information about networks, such as social connections. Graph stores include Neo4J and HyperGraphDB”. Hmmm . . . Now “Office Graph”, which is the predecessor of “Delve”, makes a lot more sense.

Ira Michael Blonder

© IMB Enterprises, Inc. & Ira Michael Blonder, 2014 All Rights Reserved

Leave a Reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.